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A method is developed for obtaining coherent states of a system admitting a
supersymmetry. These states are called sur - :coherent states. The approach
presented in this talk is based on an extension to supergroups of the usual
group-thevretic approach. The example of the supersymmetric harmonic
oxcillator is discussed, thereby illustrating some of the attractive features
of the mathod. Supercoherent states of an electron moving in a constant
magnetic field are also described.

1. Introduction

Over the past three decades, the notiou of coherent state [1-6] has enjoyed a
significant role in diverse areas of physics. Several basic definitions are in use (7).
For example, among the possibilities for the simple harmonic oscillator are the
definition as eigenstates of the annihilation operator, the one as states having and
preserving minimum uncertainty, and the one via the displacement operator. All
these yield the same harmonic-oscillator coherent states, representing a gaussian
wavepacket preserving its shape while executing the classical motion.

This talk describes a generalization of the concept of coherent states to that
of supercoherent states, relevant for systems admitting one or more supersym-
metries. A supersymmetry involves both bosonic and fermionic states. and the
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corresponding symmetry generators close under a combination of commutation
and anticommutation relations into a superalgebra. The additional structure this
entails means that the physically appropriate generalization of coherent states to
supercoherent states is not immediately apparent.

Our solution to this problem involves a extension to supergroups of a gen-
eralized method [6] for ordinary coherent states that is based on Lie groups and
involves use of the Baker-Campbell-Hausdorff (BCH) relations {8-13) connecting
different group parametrizations. Supergroups can be viewed as extensions of
Lie groups with Grassmann-valued parameters. The theory of supergroups con-
sidered both as abstract groups and as superanalytic supermanifolds has been
developed [14-16|, and methods for obtaining BCH relations for supergroups are
known [17-19]. A summary of our methods is provided in section 2.

As an example of the method, the supercoherent states for the supersymmet-
ric harmonic oscillator are considered in section 3. The supersymmetry for this
case is generated by the super Heisenberg-Weyl algebra, containing the identity
and bosonic and fermionic creation and annihilation operators. It is closely re-
lated to supersymmetric quantum mechanics (20-29], which is applicable in several
physical situations. An example with relevance to the quantum Hall effect is the
case of an electron moving in a constant magnetic field (28,29]. This situation is
considered in section 4.

The reader is referred to [30], on which this talk is baseu, for more information
about our general construction of supercoherent states, about its relation to other
approaches [31-33], and about applications in various physical situations.

2. Method

There is a close connection between group tneory and coherent states. To
see this for the simple harmonic oscillator, consider the usual approach via the
displacement operator D, given by D(a) = ezp(aa' — @a). This displaces the
annihilation operator a by a complex constant a: D~'(a)aD(a) = a + a. The
operator D is a unitary element of the harmonic-oscillator symmetry group, called
the Heisenberg-Weyl group, for which the mssociated algebra is [a,a'] = 1. By
definition, the coherent state parametrized by a is given by the action of D(a)
on the ground state |0). The correct normalization of |a) is fixed by the unitarity
of D. The form of |a) can then be explicitly exhibited using the BCH relation
eAe8 = ((A+B+}(A.B)) yalid for any two operators A and B both commuting with
(4. B].

For a general systern with an arbitrary Lie group G as symmetry group,
coherent states can be defined as follows [3.6]. Given a unitary irreducible repre-
sentation T(g) of G acting in a Hilbert space H, set |¥o) as some given element

2



in H. The coherent states are then the set {|¥,)} = {T(g)|¥o)}. This definition
is parallel to tue displacement-operator approach for the harmonic oscillator.

For systems admitting supersymmetry, we extend this method to supergroups
using the construction of refs. [14-16]. In this approach, supergroups are defined in
analogy with the definition of Lie groups via analytic manifolds, using Grassmann-
valued parameters instead of real or complex ones. The resulting supergroup
coordinates include both commuting and anticommuting variables. We refer the
reader to refs. [14-16] for details of the construction. A summary of the essential
points is contained in the paper [30] on which this talk is based.

To find supercoherent states via the group-theoretic method requires the
use of unitary supergroup representations. Introduce the supergroup generators
B;, F,, where the corresponding superalgebra® involves commutators among the
B; and anticommutators among the F,. Choose a superhermitian basis [31], i.e.,
set B; = B, and F! = —F,. Then, a general unitary supergroup element is
T(g9) = exp(A, B + 84 F,), where A; is real Grassmann commuting and 4, is real
Grassmann anticommuting.

Supercoherent states are found by applying T(g) to an extremal state in
the (super) Hilbert space. To find explicit expressions requires the use of BCH
relations for the supergroup. A general method for determining these and specific
formulae for some frequently used supergroups may be found in refs. {17-19).

3. The Supersymmetric Harmonic Oscillator

By definition, the hamiltonian H of a supersymmetric quantum-mechanical
system (20-23] commutes with [V supersymmetry operators Q; of which it is a
quadratic function: §,xH = {Q;,Q«}. The superalgebra generated by H and
Q, is called sgqm(N). Choosing N = 2 gives sqm(2), which appears in several
physical contexts [24-29]. Defining Q = (Q; +iQ;)/v2 and Q' = (Q, - :Q;)/ V2.
the superalgebra sgm(2) is H = {Q,Q'}, [H,Q] = [H, Q"] = 0.

The supersymmetric quantum harmonic oscillator can be defined in terms
of annihilation and creation operators a, a'; b, b! generating a supersymmetric
extension of the usual Heisenberg-Weyl algebra: [a,a'] = {b,4'} = I. The corre-
sponding super Hilbert space iz spanned by states |n,v), wheren = 0,1,2... and
v = 0,1. States with v = 0 are called bosonic und those with v = 1 are called
fermionic.

The sqm(2) superalgebra is generated by the oscillator hamiltonian H =
a'a +b'b and by the supersymmetry operators Q = ab', Q' = a'b. It follows from

* For an overview of superalgebras, see ref. [34)
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Hin,v) = (n + v)|n,v) that |n,0) and |n — 1,1) are degenerate states for all n
except n = 0. The ground state |0,0) is thus unique. Unbroken supersymmetry,
Q10,0) = Q'10,0) = 0, implies that the ground state has energy eigenvalue zero.
The generator Q' takes bosonic states into fermionic ones, while Q' takes fermionic
states into bosonic ones.

Following the method described in section 2, supercoherent states for the
supersymmetric oscillator are given in terms of a unitary representaticn T'(g) of
the super Heisenberg-Weyl group. The supergroup element of relevance may be
taken as T(g) = ezp(—Aa + Aa' + 6b' + 6b) where A is complex Grassmann
commuting and § is complex Grassmann anticommuting. The necessary BCH
relation for the sup:r Heisenberg-Weyl group, needed for explicit calculation of
the supercoherent states, is found using Lemma 1 of ref. (17]. The result is

T(g) = exp( -};05 - %IAI2 Yezp(Aat)ezp(8bt)ezp(—Aa)ezp(6d) . (3.1)

The supercoherent states |Z) are obtained by applying T'(¢) to the ground
state |0,0). They are given by

1Z) = (1+ %oﬁ)m, 0) +6l4.1) |, (3.2)

where for convenience we have defined |4, v) = ezp(—|A4|*/2)ezp(Aat)|0,v).

The supercoherent states |Z) have the following attractive properties, all
of which are natural generalizations of the correesponding features of ordinary
harmonic-oscillator coherent states.

o They are defined via a natural extension of the usual displacement operator
approach.

o They are eigenstates of the annihilation operators a and b: a|Z) = A|Z),
bZ) = —=6|2).

¢ They maintain the minimum-uncertainty value Agdp = % in time.

o They are unity normalized, (Z|2Z) = 1.

¢ They are not orthogonal and form an (over)complete set. The identity is
resolved by [|Z)(Z|d8d6dA = rI.

o They yield the usual harmonic-oscillator coherent states |A) when § = 0.

o They contain as the subset A = 0 the usual fermionic coherent states (35] for

a single anticommuting fermionic degree of freedom.

4. A Physical Example

The quantum system consisting of a nonrelativistic electron of mass .M and
charge e moving in a constan: uniform magnetic field B = B# provides a physical
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realization of supersymmetric quantum mechanics [28,29]. The wavefunctions
e~Ety(F) for this system obey the two-component Pauli equation, which reduces
to HYy = Ey with H = ;h[c'r‘ -(p - e.‘f)]z. The use of cylindrical coordinates
is natural, as is the choice of cylindrical gauge A, = —iBy, A, = 1Bz. For
simplicity, we restrict the analysis to the two-dimensional problem, so that p, = 0.

The explicit realization of the super Heisenberg-Weyl algebra is as follows.
Define the dimensionless quantities H = M H/+B, E = ME/eB, and introduce
the annihilation operators

i 1
a= me (8, + ra, + EeBr) (4.1)
and 0 1
b= [ 0 0] . (4.2)
Then, the Pauli equation takes the manifestly supersymmetric form
Ay = (ata+bth)y = Ey . (4.3)

All the features of the supersymmetric harmonic oscillator discussed in section 3
are reproduced. Note that the fermion annihilation operator b acts to reverse the
electron spin, and therefore the sqm(2) generator Q@ does also.

Equation (4.3) is equivalent to a confluent hypergeometric equation with two-
component solutions labeled by two quantum numbers, one related to the energy
eigenvalue £ and one labeling degenerate eigenstates. The explicit solution is
given in our paper [30]. We write ¥ = |n,m;v), where the upper and lower
components of ¥ are labeled by v = 0 and v = 1, respectively. The operators a
and a' act as canonical lowering and raising operators on the quantum number n,
while b and b' act on v. To form a complete set, introduce

ct= -ch?e"%a, + éa, - %cBr) , (4.4)

acting as a canonical lowering operator on m and satisfying [¢, ¢'] = 1. The full su-
pergroup for this physical system is therefore the product of the super Heisenberg-
Weyl group (generated by a, b, and conjugates) with another Heisenberg-Weyl
group (generated by c and conjugate).

The supercoherent states can now be constructed via the method of section
2. Their explicit form is quickly found from eq. (3.2) by noting that coherent
states \-ith respect to c and c' are the usual harmonic-cecillator coherent states
and that ¢ and ¢! commute with all other generators. The result is

2 2 nem
|1Z) = ezp( %Oa)ezp(—%) e:p(—E'zl-) Z %Tf—/.;an.-_?(ln,m:O) + 8|n,m; 1)) :

(4.9)



These supercoherent states depend on three Grassmann-valued variables, A4, C,
and 6. It can be shown that all the attractive features of the oscillator superco-
herent states discussed in section 3 are reproduced.

The expectation values of the hamiltonian H, (Z|H|Z) = ’;5-(.4.71' - 69),
and of the magnetic-moment interaction energy U = —eBos,./2M, (Z|U|2) =
- £& (1 + 266), provide insight into the role of the Grassmann-valued variables
in Eq. (4.5). The difference (Z|H -U|2) = f,ﬁ-(AZ + 1) represents the energy
expectation in the absence of the magnetic moment. It is independent of 88 and
the value of A4 is shifted by one half. Since the magnetic moment U distinguishes
between eigenstates with v = 0 and v = 1, it follows that the term with 66 contains
the information about the energy splitting between the two sets of eigenstates.

As we have seen, the supersymmetry present in this physical system ensures
a group-theoretical and natural incorporation of the electron spin. This feature
of supersymmetry is manifest in other physical systems. For instance, one key
aspect of atomic and ionic supersymmetry [25] is the natural appearance of the
Pauli principle.
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